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PHOTON ABSORPTION AND RADITTION OF NONEQUILIBRIUM
PLASMA’ OF FINITE VOLUME IN LINES WITH DOPPLER BROADENING

M. B..Chelnokov

ABSTRACT. This paper examines the absorption of photdns
in a plasma of finite volume for the spherical geometry model.
"The radiation of a plasma ‘confined in a ‘cylindrical volume is
obtained in the two~hemisphere gpproximation.

‘Let us consider the absorption of photons which are radiated for a given
spontaneous transition. Comsidering the model of a homogeneous plasma confined
in a spherical voiume‘of radius R, we take the central point of this volume as:
the characteristic point aﬁd‘finé the\ébsorption at this point. The number of

quanta of frequency v arriving at the point from the entire volume is

4rr?

. exp (— &)
fo SRV, &

where V is the volume, v is the distance from the point at which the quantum
originated to the point in queStion, P, is the emitted radiation spectrum (in
number of quanta), Kk, ig the absorption'cdefficient of photons of the given fre-

quency V.

In (1) we consider the coefficient kv to be constant throughout the volume.
. “ r -
Otherwise, we would have to write £Xp (—#,r) in place of exp(-fx,(x,y,z)d7)
: /]

At all frequencies of a given broadened line, per unit volume in the regioh of

the given point there is absorbed

exp( K.r)
gvf o Vi, 2
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Writing (2) in the spherical coordinate system and performing the integra-

tion over the space variables, we find
M= [P [1=exp(—Rx)] dv.. (3)
S0

Let us examine in more detail the frequency characteristics k,, and P,, which

appear here. We have for the absorption coefficient [1, 2]

k=K .éx et [v— Vn>2 4"
v o €Xp ' OR*T vo ! (4)
—_ &« Ny\ =¢° V- g
I{O—(lfg:NZ);’—zv—ofNu W'-’ (5)
where u is the molecular weight, c the speed of light, R* the universal gas /55

constant, T the gas temperature, q the electron charge, m the electron mass,

f the oscillator force, N the level concentration, and g the statistical weight.

The subscript B refers to radiating levels, the subscript H refers to the

absorbing levels, 0 refers to the center of the line.
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In (5) the factor ( EF-ﬁJ) accounts for the induced radiation, which
i B 4Vu

can be considered as an'effect which reduces the absorption. We have for P,, [1]

. pe? [v—v,\E
.P,=P,exp [—QR*T <_V—o—0) ] . (6)

Let us find Py (expressed in numbers of quanta). The total number of radiated

quanta is NgA, where A is the spontaneous transition probability.

Then oo ) :c” . - L

’ pes - y..__vo . ~

exp| — dv = N,A.

‘P°a/~ p[ el " H R
0. BT —— ¢))

Let us calculate the integral in (7). TFollowing [lliwe make the change of

variables ' " oyv— oy \
= . 0 i
rw»_ cl/2R'“T( Y. )

v
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Let us consider the limits. For y=-4-c0 o =+oo For v = 0, we have

P~ 100
°V =10 ]
Considering that this quantity may be equated to -», we obtain the integral

_S'e‘(p ——w-) dm but this is the Poisson integral, equal to V& (see, for
-0 .

example, [3]). Thus, the integral in (7) is _-1/-2—ML However, this

derivation is really incorrect, since we have no criterion to be used for

equating ¢ 1/972%;%106 to infinity, and in this connection the calculated

value of the integral camnot be considered reliable. Therefo're, we shall exa-
v =9,

mine another derivation. Replacing ° lby x, we £find that the integral

- Yo .

in (7) equals

coext pe* .vdx{
J p( 2R*T )
-1 . S - E,,'

since for v = » x = o, and for v =0 x = -1. This integral may be split into

two integrals, wrltlng it in the form

e, 3

- pc? ,

‘f exp ( IRT ) vodx f (— _1537' X2 ) vodx. (8) 1

0 ' 0 S E

Since the 1ntegrand in the Po:Lsson integral is symmetrical, the first /56 |

1 2-:R*T . .

integral here is 7—0— / —--p—~—~ The second integral is expressed in terms P

of the probability integral ¢ [4]:

-1 o S :
/e TRT. /e N\ 0
= [~ )vodx =V ZF @(r:f V )=

/2~=RT'®'(;»/‘ b )

2c P ZR“T




We have already noted that e ~'10°
V Q‘R.;T'f"_ _‘
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The probability integral equals one to within 10-7'fbr an argument equal

to five, and with increase of the argument this prec131on increases even more

sharply (see, for example, [5]). Thus (8) equals fa“.i/ 2“R*T . Then we
. ) o b
find from (7)
NA__
Po =
c ,_,np

i

We note that we shall have need for a comparison of the two methods of cal- .
culating the integral in (7) in our later arguments. Let us return to (3)

Substituting (4), (6), and (9) into (3), we obtain for the photon absorptlon
. ” .
N A * exp | — pc” ( vy —vy, \? [ — )
V QTR*T - 2R*T\ v, -
0 } , : o L '

c | (10)
' 2 — Y .
o e'_xp[—-.choexp(-—Q;c*T( Y - Yo >?)]}d?‘
: . : o |/ .

- remembering that here ko is defined by (5). We introduce into (10) the variable

ool )
(0=Cl/2R*T- Y ’

Then the previously mentioned question of,the limits arises, namely: for

- -

/g '

v=0w=-—¢ }/ ZR"T can we assume approximately that this quantity

-equals minus infinity? The correctness of this assumption has been proved for
the integral in (7), based on the fact that a rigorous analysis leads to the
same result as the derivation.using this assumption. Let us compare the inte-

grands in (7) and (10) after 1ntroduc1ng therein the variable w. 1In (7) we

have the integral Sexp(-wuﬂ)dm a B whlle in (10) we have
-0

jeXP(“'wﬂ{l~*exp{—¥Rxoéxp(~oﬁﬂ}dwf‘

(For the moment, we leave the questions of the limit open.) We note that the

integrands are symmetric in both cases. The integrand of (10) is that of (7) 157
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multiplied by the difference between unity and the exponent. - Since the latter
is always negative, the factor in the braces is always less than one and, con~
sequently, the integrand in (10) is always less than that-in (7). Therefore,

the correctness of the replacement of —106 by 4w.1n the limit for (7) leads to

the correctness of ‘the same replacement in (10). Thus (10) may be transformed

" to the form

[e =}

. N’A
M= ex (—-(02 {Il —ex —'Rif GXP(“‘“’Z)]} do.
, w/ p ) p [ R, an
“w ’
The following: function was introduced and tabulated in [6] (see also [7])
h | | © ‘ '2‘ _ ' o dw'
;f<6>=’17’.f»f'e)ip<-—w)expl bexp (— ")l Lo

Bearing in mind that the first integral in (11) (after removing the brack-

ets) is the Poisson integral, equal to f%, we see that if we introducthhe

function (12), then (li) tékes the form
Tl=N,A [1— )],
: . (13)

t = Rx,.
where ¢ 0

Since the absorption coefficient can be expressed in terms of-the photon
absorption cross 'section oghg and the concentration Ny of the absorbing atoms,

namely: k = ogbsNpg, we have

-y

o & N
‘ -.E;'“;fé"?iﬁ‘-’?’“(l g NH) : ( (14)
and the cross section is
. qu ’[ “P | , .
%ab§“ m%'b’”zR*T' ' (15)

)

¢

Since a tabulated function appears in (13), this expression is not always con-
venient for use in practice, for instaﬁce,vwhen (13) must be introduced into
the equations, and they must then be solved for the unknowns which appear in




£(¢). Therefore, we make an approximation of- £(§). We found that for £ > 0

the approximation has the form be

. . 1 .
f (E)z-_ 1,940 (5 +0,548)M% "=

(16)

H

to within 10% (with the exception of the interval 0.1 < & < 2.5, where the
accuracy deteriorates to 55%). (If g > 1, the appfoximation f(g) = 0.505-1'10
is wvalid to within 2Z; however, the condi;ion;glg 1l is not always known a priori
and is not always satisfied.) |

) - \

Thus, the following expression is va}id for the number of photon absorption
events of the given spontaneous transition per unit volume per unit time near

the central point of the homogeneous spherical plasma volume

B H

‘ ‘ ' ’ - - ) NA . - 1,095 - , i

I1="N,4 {1 — 0,516[.% g .-/v,((r.‘- g_,_,___,> +o, Looan

RN R , abs’ & N, %8 ’ T
where Ogabs may be found from (15):

Let us consider the line radiation Qf‘a homogeneous plasma confined in a /38
cylindrical volume of radius R and length_l. We use the Biberman two-hemisphere
approximation [8].. In this approximation, it is comnsidered that at a point lo-
cated at the distance x from the center of an infinitely long volume of radius '
R the radiation comes from two hemisphereé — one with radius R + x, the other
‘with radius R - x. If photons from the hemisphere arrive at.the point, then in
accordance with (17) the following number of photons is absorbed per unit volume

per unit time y

Cx———[l‘—' : fl - ,
1,940(C3f+0,548)1'°95 ] (18)
where
1 - _ &l a
P G =—§_NBAB—-"’ Co=e afbéNu (1 &s Nn) ’

and r is the radius of the given hemisphere.
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Then the following number of photons is absorbed in an elementary annular

cylinder of length 1 per unit time .

onlxdxC, |2 — 1 _
- l 1,940 {Cy (R — %) - 0,548] s

« f

¥ . . N 1 . .
1,940 [C, (R + %) + 0,548]‘v°95}'

In order to find the absorption throughout the entire volume, we must inte-
grate this expression in the limits from O to.R. The total radiation from the
entire volume without absorption is .

\ -

N, AB_Hn'Rl 21th1R’

In order to obtain the plasma radiation energy Q, we must subtract from
the photon radiation the photon aBsorption, multiply by their energy‘ﬁv (h is
the Planck constaﬁt),'and first sum over all the lower levels which combine /
with the given uppervleveiland then sum the resulting expression over'éll the

upper levels,

As a result,we obtain * .

Q = 1,03xlh Vz-—— Vau X
(20212 + o 548)0905 —2(CR+0 548)" 905 1 0,580

ke { . 0905 T (19)
L CR+0548 [(2C,R -+ 0,548)-5695 — 2(C,R -+ 0,518)-99% + 1,060]} :

0,095

[

t
Usually it is sufficient in practice to consider only a few lower transi-

tions. This assumption is satisfied for an infinitely long cylinder, and it is

reasonable for use in those cases when 2R < 1. In the case when 2R > 1, ﬁe can

draw an analogous conclusion in the two-hemisphere approximafion fér an infinite
volume confined between two planes located at the distance‘l from orie another.

In this case, the integration is performed with respect to the 1 coordinate.

2




As a result of the derivation, we obtain

Q = 10,95R% 5, ¥, 2 voru [1,060 — (Cul +0,548) 0%,

b on 2

(20)

where the quantities Cl and 02 are expressed just as in the preceding derivatiom. /59

For comparable values of 2R and 1, it is reasonable to average these two expres-

sions as follows

Q= 2R+l Q2R>t+ y Q2R<i_j
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